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ABSTRACT 
Most of the techniques of nonlinear optimization assume the existence of a differential function, but there also exist other 
approaches. In this paper, we propose a non-differential algorithm that solves the problem of minimization and 
maximization for any objective function of several unknown variables. The algorithm searches for a solution vector of 
variables that yields the optimal result of the objective function, using a trial-and-error process. The algorithm is not fast, 
but it converges to a non-trivial solution, if it exists. The method will be used to determine the minimum and the maximum 
of the outputs of a sociopolitical model of E-Democracy. This model of E-Democracy is based on a Mamdani fuzzy 
inference system.  We provide formalization and Matlab implementation for our fuzzy system and for the algorithm. 

Keywords 
Nonlinear optimization, non-differential optimization algorithm, Mamdani inference system, E-Democracy model, direct 
search. 

  

 



1. INTRODUCTION 
Generally, the matter of optimization belongs specifically to human nature and it may be the key of the evolution of 
mankind. There has been a continuous struggle for the human race to ameliorate its condition, and things seem to keep 
the same trend, at least for short and medium term. 

It is a natural consequence that a multitude of solutions have been proposed for plenty of types of optimization problems. 
These include methods of optimized search for better economic, social or mathematical solutions, as well as a continuous 
search to improve the methods themselves, or even discover new ones. 

From a mathematical (and quite a from a human reasoning) point of view the problem of optimization consists of: 

• several unknown variables 
• an objective function depending on the unknown variables, modeling the purpose of the problem 
• a system of equalities and inequalities, the constraints of the problem 

The general case is when the objective function or the constraints are mathematically formalized as nonlinear functions, 
and this may normally be the case of non-trivial human reasoning. The goal of the optimization process is to find a 
maximum or a minimum for the objective function. Formula (1) describes the generic optimization problem: 

 max ( ) or min ( ) 

( ) 0, 1,...,

( ) 0, 1,...,

where
 is a subset/vector of  unknown variables, 

 is the set/domain of instances of ,  
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We are interested in discussing the case where the problem has only one objective function f and this function is not 
differentiable. In specific literature, we identify several non-differential optimization algorithms. Some of them assume a 
sort of partial differentiability or sub-gradient approach: generic cutting plane algorithm, minimax problems, quasi-Newton 
method, parametric programming, relaxation methods, sub-gradient optimization [1]. Yet, we are interested in solutions 
that do not require any kind of differentiability for f, and these are better known as direct search methods. While in the 
1970's direct search approaches had been dismissed by the proponents of differential optimization for three reasons: 
heuristic development, no proof of convergence, and slow convergence rate, the interest for them has lately increased for 
two reasons: single available solution and proof of convergence for large number of direct search methods [2]. Those who 
coined the term of direct search [3] pointed out on their simplicity and adaptedness to electronic computations. From the 
practical side, three broad categories of direct search methods are identified [4]: 

• pattern search methods: procedures that search for best improvement of f each time a parameter varies 
according to predetermined steps;  

• simplex methods (distinctive from homonymous linear programming method): creating a n + 1 set of points (i.e. a 
simplex): the procedure searches for an improvement of f reflecting the worst vertex in the simplex through the 
centroid of the opposite face (i.e. centroid of the remaining vertices); 

• methods with adaptive sets of search directions: procedures that adapt the search to the f curvature by using the 
information available in the previous steps. 

Each of these three broad categories employs several methods, different approaches of non-derivative direct search 
methods being necessary since there is no such thing as one method fits all. In this paper, we propose an algorithm that it 
is not intended to be original, but to be particularly effective for achieving the optimization of the Mamdani fuzzy inference 
system. 

Mamdani fuzzy inference system (MFIS) is among the first fuzzy methodologies to be dealt with, and it continues to be a 
very common one. It uses linguistic control rules to model decision or complex systems problems and it is very close 
related to human reasoning [5], which also makes it very popular. However, other types of fuzzy inference (e.g. where the 
objective function has mathematical crisp formalization) are sometimes preferred, since algorithms which can be used to 
automatically optimize them already exist. The objective function f of an MFIS is determined through a process of several 
transformations that cannot be simply formalized mathematically in one single expression. Yet, we propose a method to 
optimize it through a direct search approach that will be further discussed in this paper. 

In a first attempt, we presented a model of E-Democracy that is based on an MFIS with five inputs and one output [6]. We 
introduce in this paper a simplified MFIS approach of this model, with only three inputs and one output. We briefly discuss 
this new model of E-Democracy (NME), providing only the basics of the MFIS that supports it. Extensive discussions on 

 



NME will be subject to further research. However, this paper addresses the optimization in an MFIS, so the NME is going 
to be used only for the practical reason of introducing our algorithm for optimum E-Democracy (AOE). 

This article is organized as follows: section 2 briefly describes the logics behind MFIS in the context of NME and builds the 
specific problem using a Matlab approach; AOE is discussed in section 3; in section 4, some comparisons are made 
between AOE and methods for a differential optimization problem; the last section concludes this paper. 

2. E-DEMOCRACY MODEL AND ITS MFIS 
There is plenty of printed material on MFIS, but any discussion in this direction is considered to be unproductive for our 
article purpose. Nevertheless, we remind the components of MFIS [7] and we also define, using Matlab functions, the 
fuzzy logic (FL) of our model by specifying methods used for each component: 

i. Fuzzification – building the fuzzy subsets of the inputs, defined by membership functions, using crisp input values 
ii. Definition of knowledge base – applying fuzzy operators by building rules of MFIS: min for AND, max for OR 
iii. Implication method – determining an intermediary output (O) for each rule, based on a single or multiple fuzzy 

subsets: prod 
iv. Aggregation of all outputs – combining every intermediary output O of each rule to create a single final output (F): 

sum 
v. Defuzzification – extracting the crisp value from final output F: centroid 

FL is not important when discussing AOE, as the latter applies to any kind of logic or fuzzy inference system, but it is 
necessary to better frame NME. We end our short generic presentation of an MFIS with an illustration in Figure 1. 

 
Fig 1: MFIS components 

Before introducing our MFIS for NME, let us briefly discuss the rationale behind NME. E-democracy has been seen as an 
extension of E-Government [8], but this is not the case. In order to define E-democracy, a brief description of the 
knowledge society is required, since this represents the very foundation upon which it is built. The term “knowledge 
society” stands for a large community where people are dependent on each other and members are considered to be 
equally important, since one’s work and experience constitute a strong contribution to achieving individual and common 
ends. Knowledge is built on the concept of information, which, in a global society, must be prevented from being impeded, 
manipulated and/or censored. Furthermore, as palpable and abstract tools of knowledge society, information and 
communication technologies have the purpose of identifying, producing, processing, transforming, disseminating and 
using information for the benefit of human development through knowledge [9]. The continuous cooperation between 
members of knowledge society is based on non-sum-zero games, and the attempt of one member to deceive another 
leads to poorer individual and common results [10].  

The main political institutions of representative democracy or of the state subject to the rule of law are: parliament, 
executive (govern and presidency/constitutional monarchy) and justice. We build our model of E-democracy on these 
institutions, but we make a substantial improvement by adding another institution: citizenry. Citizenry is not just a body that 
includes all of the citizens, but it is an expression of general will (volonté générale) and common interest [11], without 
neglecting the freedom of individuals [12]. Justice is the institution that prevents citizens or representatives from imposing 
their tyranny [13]. It is also the watcher and preserver of the rights of each community, minority or individuals and is the 
key for a society of inclusion, no matter of religion, gender, race, age, beliefs etc. [14]. 

Thus, the three inputs of E-democracy’s model based on FLs and MFIS are Citizenry, Justice, and Delegates and they 
yield the E-democracy output. Firstly, we define our model of E-democracy by establishing the membership functions 
(MFs) of the fuzzy subsets that build the fuzzy sets (FSs) of the three inputs and one output. Secondly, we build the rules 
of E-democracy (REDs) using natural language and afterwards we provide a mathematical formalization of these rules. All 
mathematical and computational formulae are presented herein with respect to the established Matlab formalization [15]. 
For functions and methods used in this research, which are not already implemented in Matlab, an algorithm and/or a 
source code will be provided. 
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In addition, the following notations are going to be introduced: type of each MF (TMF), name of the fuzzy subset (NMF) 
and values defined (VD) of each MF. VD has five components: deviation or uncertainty (σ); lower bound (lb) and upper 
bound (ub) that delimit the crisp interval of each MF; and the approximate left value (lv) and approximate right value (rv) of 
each MF support [16]. 

MFs of all FSs are presented in Table 1: FS of Citizenry (FC), FS of Justice (FJ), FS of Delegates (FD) and FS of E-
democracy (FE) and each MF is described by Matlab function gauss2mf [15], using a 0-1 scale for inputs and output. 

Table 1. MFs of E-democracy model 

FS NMF TMF VMF 
VD 

σ lv lb ub rv 

FC 

non gauss2mf (1.0000 0.000 0.065 0.200) 0.065 0.0 0.0 0.2 0.4 

weak gauss2mf (0.0325 0.300 0.0325 0.400) 0.0325 0.2 0.3 0.4 0.5 

moderate gauss2mf (0.0325 0.500 0.0325 0.600) 0.0325 0.4 0.5 0.6 0.7 

strong gauss2mf (0.0325 0.700 0.0325 0.800) 0.0325 0.6 0.7 0.8 0.9 

over gauss2mf (0.0650 0.900 1.0000 1.000) 0.065 0.7 0.9 1.0 1.0 

FJ 

weak gauss2mf (1.000 0.000 0.065 0.300) 0.065 0.0 0.0 0.3 0.5 

moderate gauss2mf (0.065 0.500 0.065 0.700) 0.065 0.3 0.5 0.7 0.9 

strong gauss2mf (0.065 0.900 1.000 1.000) 0.065 0.7 0.9 1.0 1.0 

FD 

weak gauss2mf (1.000 0.000 0.065 0.200) 0.065 0.0 0.0 0.2 0.4 

moderate gauss2mf (0.065 0.400 0.065 0.600) 0.065 0.2 0.4 0.6 0.8 

strong gauss2mf (0.065 0.900 1.000 1.000) 0.065 0.6 0.8 1.0 1.0 

FE 

non gauss2mf (1.000 0.000 0.065 0.100) 0.065 0.0 0.0 0.1 0.3 

weak gauss2mf (0.065 0.300 0.065 0.400) 0.065 0.1 0.3 0.4 0.6 

moderate gauss2mf (0.065 0.600 0.065 0.700) 0.065 0.4 0.6 0.7 0.9 

strong gauss2mf (0.065 0.900 0.065 1.000) 0.065 0.7 0.9 1.0 1.0 

 

As can be seen from Table 1, three values were assigned to σ in order to build any MF of our FSs, i.e. 1.000; 0.065 and 
0.0325. Value of 1.000 is used only for MFs at the beginning and at the ending of any FS, and it has no influence in 
building MFs because its area of interest is outside the domain of MFs (e.g. the first parameter of FE's non or the third 
parameter of FE's strong for function gauss2mf; the second and fourth parameters of gauss2mf are lb and ub, 
respectively). Thus, the extremities of FSs (i.e. the beginning and ending of their domains) have σ value of 1.000, but it 
could have been any other value, since it does not affect the construction of any FS. This is the reason why we do not take 
it into account when presenting the figures in column σ of Table 1. This column displays only the value used to build each 
of the FSs, and it can be noticed that any MF has only one value for σ. Normally, function gauss2mf accepts two values 
for σ (first and third parameter), but we build symmetric MFs and we use only one value. The predominant value for σ in 
Table 1 is 0.065, which is a given value. As far as this value is concerned, and the reasons why it has been chosen, no 
details are available herein, since such a discussion would exceed the purpose of this article. The only reference made in 
this respect is that for more strict MFs (e.g. FC's moderate MF, on shorter domain than most of the other MFs) we use half 
of this predominant value of σ (i.e. 0.0325). 

Figure 2 displays the FSs of our E-Democracy model, using the figures presented in Table 1. It may be observed that a 
given 0-1 scale and two values (i.e. 0.0325 and 0.065) for σ determine NME. By defining the rules of E-Democracy model 
(REDs) we can better understand the choice of building FSs when using the approach displayed in Figure 2. The eight 
REDs are : 

RED 1) If (Citizenry is non) or (Justice is weak) then (E-Democracy is non) 

RED 2) If (Citizenry is weak) and (Justice is not weak) then (E-Democracy is weak) 

RED 3) If (Citizenry is not non) and (Justice is moderate) then (E-Democracy is weak) 

RED 4) If (Citizenry is not non) and (Justice is not weak) and (Delegates is not moderate) then (E-Democracy is 
weak) 

RED 5) If (Citizenry is moderate) and (Justice is strong) and (Delegates is moderate) then (E-Democracy is 
moderate) 

RED 6) If (Citizenry is strong) and (Justice is strong) and (Delegates is moderate) then (E-Democracy is strong) 

 



RED 7) If (Citizenry is over) and (Justice is not weak) and (Delegates is moderate) then (E-Democracy is weak) 

RED 8) If (Citizenry is over) and (Justice is strong) and (Delegates is strong) then (E-Democracy is moderate) 

  

  
Fig 2: Fuzzy sets and fuzzy subsets of NME 

Briefly speaking, through REDs, a model of E-democracy is proposed. In this model, Justice represents the watcher of all 
the other institutions, but Citizenry is decisive for obtaining high values of E-democracy output. In order to yield the 
theoretical maximum output, Delegates must be at a moderate level, Justice at high level and Citizenry must not overpass 
the limit of strong participation. A minimum output is theoretically obtained when either Justice or Citizenry are at their 
lowest level. A more elaborated description of E-democracy model has already been presented [6], and we do not want to 
insist in any other way on this subject. 

Table 2 presents the mathematical formalization of REDs, using a Matlab approach [15]: 

Table 2. Mathematical formalization of REDs. AND: 1; OR: 2 
Antecedents Consequents Connectors 

Citizenry Justice Delegates E-democracy AND/OR 

1 1 0 1 2 

2 -1 0 2 1 

-1 2 0 2 1 

-1 -1 -2 2 1 

3 3 2 3 1 

4 3 2 4 1 

5 -1 2 2 1 

5 3 3 3 1 

 

In this section, we have only given a hint on what an MFIS is, and we have proposed a model of E-Democracy (i.e. NME), 
without discussing it in depth. NME will constitute an example when AOE is presented in the next section. 
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3. ALGORITHM FOR OPTIMUM E-DEMOCRACY (AOE) 
This section is dedicated to an ample discussion about AOE, exploring through examples the MFIS of NME presented in 
section 2. The introduction of NME is made in order to prove that sometimes an objective function f cannot be available in 
a classic style. However, we try to demonstrate that a solution to optimize an MFIS is accessible, and this may help in 
future researches when MFIS is used, without needing to choose another substitute approach generated by the 
optimization problem. When the question of finding minimum and maximum outputs of E-Democracy arose in our previous 
research [6], the solution came naturally by using a human reasoning approach: successive trials which follow the 
steepest descent pattern. The steepest descent approach already proved to be convergent [4], but a mathematical proof 
of AOE convergence is not going to be presented in this paper. When AOE was conceived and implemented, methods of 
nonlinear differentiable optimization, especially backpropagation, were considered to be only an aspiration. Even if AOE 
could easily fall in the category of patterns of direct search methods (see section 1), the improvement (i.e. stepping up the 
search) was inspired by backpropagation alike methods which use gradients of first and second order [17] [18]. Only that 
AOE does not use gradients of f or of the least-square distance function, but explores a fluctuating region of each 
unknown value of vector x, and searches for a better value of f, thus determining intermediary solutions of f and x. 

Figure 3 illustrates how AOE works in a basic approach; s is the fluctuant step used to create a region around any 
unknown value of vector x and x∇  is the vector combinations of all possible regions around any element of x. 

 

Fig 3: Basic AOE 

The logic behind AOE is simple, the changed element of x (i.e. x' in Figure 3) that yields a better value for f takes the new 
value while the other elements of x remain unchanged. With each iteration we get new values for x and f and we stop the 
algorithm when some criterion is reached (e.g. maximum number of iterations or changed values of f less than a given 
precision). There is only one issue at this stage: how to adaptively use s or how to change it if no improvements of f are 
found after an iteration. Actually, this may be the key of any direct search method that follows the path of patterns. The 
solution is simple: we start from a given precision step, and we increase the searching step with each unsuccessful 
iteration. How to increase the step may raise another issue and there are several choices: add a given value to the step, 
double the step, using a logarithmic or exponential scale, using arithmetic, geometric or Fibonacci series etc. In our 
explorations the first two choices gave satisfying results, and we will discuss later this issue when presenting an 
improvement of AOE (IAOE). 

A simple formalization of AOE has the following structure: 

1. Let us read the type of optimization (i.e. minimization or maximization), the value of initial step s, the precision  p, 
and the maximum number of iterations 

x1
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2. Let us take the values of initial input vector x and calculate the initial value of output q 
3. Let us initialize the final vector x* = x, and let us initialize the final output q* = q 
4. Let us calculate, up to the limit of maximum number of iterations, new values of x* and q* using a fluctuant s to 

obtain a new x∇ on each iteration t. The condition of yielding new solutions of x* and q* is that q*t + p < q*t+1 for 
maximization and q*t - p > q*t+1 for minimization. 

A more elaborated pseudo code formalization of AOE with an example applied on NME is also provided  in Appendix A.1 
and the Matlab implementation of AOE is available in Appendix A.2. 

3.1.Supporting algorithms for AOE 
Before presenting some results of AOE, let us have a short discussion on the Matlab formalization of REDs, illustrated in 
Table 2. In order to apply AOE we need to explore all the possible situations. Thus, the REDs containing negative inputs 
from Table 2 must be transformed in REDs with positive inputs (REDPIs). While from a linguistic and human reasoning 
point of view a formalization of REDs containing negative inputs is very convenient, from a computational point of view is 
burdensome. This is the reason why we need to transform all REDs in REDPIs and the result is displayed in Table 3. In 
order to achieve that, we use an algorithm that generates antecedents and consequents (AGAC), see Appendix B1 with 
examples. 

Table 3. REDPIs, mathematically formalized, generated with AGAC. A-actual row, B-initial row, C-constraints, D-
outputs, E-connectors; the highlighted lines are generated REDPIs, the non-highlighted lines are unchanged, 
mathematically formalized REDs 

A B C D E  A B C D E 

1 1 1 1 0 1 2  15 4 3 2 1 2 1 

2 5 3 3 2 3 1  16 4 3 2 3 2 1 

3 6 4 3 2 4 1  17 4 3 3 1 2 1 

4 8 5 3 3 3 1  18 4 3 3 3 2 1 

5 2 2 2 0 2 1  19 4 4 2 1 2 1 

6 2 2 3 0 2 1  20 4 4 2 3 2 1 

7 3 2 2 0 2 1  21 4 4 3 1 2 1 

8 3 3 2 0 2 1  22 4 4 3 3 2 1 

9 3 4 2 0 2 1  23 4 5 2 1 2 1 

10 3 5 2 0 2 1  24 4 5 2 3 2 1 

11 4 2 2 1 2 1  25 4 5 3 1 2 1 

12 4 2 2 3 2 1  26 4 5 3 3 2 1 

13 4 2 3 1 2 1  27 7 5 2 2 2 1 

14 4 2 3 3 2 1  28 7 5 3 2 2 1 

 

What AGAC has actually done in Table 3 is the elimination of operator ‘not’ so that all REDs are transformed in rules of E-
democracy with positive inputs. One might easily observe that we have 28 REDPIs obtained from eight REDs. However, 
by combining three inputs in an exhaustive manner, we could only get 27 REDs. This is not a flaw of AGAC, but a 
redundancy given by the eighth RED, which is an exception to the seventh RED. It may be a natural thing in politics or 
social problems to deal with a lot of redundancies or discrepancies when specifying fuzzy rules of an MFIS. This also 
makes MFIS a choice for negotiating with uncertainties and human inaccurate perception in any society. 

Another auxiliary tool for AOE is an algorithm that generates an initial solution (AIS), which is necessary for the second 
step of AOE. AIS finds the mean of each variable from any REDPI, or assign a neutral value for inputs that are 
unaccounted in a REDPI (i.e. has the value of zero). We are not going to insist on this, but we provide a formalization for 
AIS in Appendix B2. 

3.2. Results of AOE 
Up to this point, we have discussed AOE and we have introduced two other preliminary algorithms that support AOE (i.e. 
AGAC and AIS). It is now the moment of presenting some results obtained with AOE, taking advantage of the use of 
AGAC and AIS. 

Table 4 presents results obtained with AOE for minimization and maximization of E-democracy output and also the 
number of iterations (NI) needed to reach the solution. These results prove that AOE finds E-democracy’s minimum with a 
low precision step = 0.01, and further improvements cannot be found with a higher precision. Furthermore, the initial input 
solution x and initial output solution q are practically final solutions for inputs and output, respectively. On the contrary, 
because of REDs, we observe some improvements when maximizing the result of E-democracy. However, improvements 

 



given by higher precision calculations are not important if we look from a political or social point of view, because final 
output q* is identical for a precision of 10-4 no matter the value of step from Table 4. 

Figure 4 illustrates the effort needed by AOE to yield maximum output with different precision step, using a cubic 
interpolation of NI from Table 4. 

Simulating a search for a best result on a computer cannot assure an extrapolation of AOE’s results to a human universe. 
However, even if we think of it as a metaphor, we can take that a substantial easier human effort can determine if the 
output  is a solid one, with a decent precision of a hundredth of the universe of discussion (i.e. step = 0.01 on a 0-1 scale). 
There is no need for an endeavor that would consume a lot of energy and would require exquisite skills to determine if E-
democracy is far from its maximum. In case of minimization, we are not able to verify the accuracy of our E-democracy 
model, but we provide a comparison in section 5 with classical differentiable minimization methods in a series of data. 

Table 4. Optimum results of E-democracy output using different precision step. 
Maximization: x=(0.75, 0.95, 0.50), q=0.8566; Minimization: x=(0.10, 0.15, 0.50), q=0.0931175 

step 
Maximization Minimization 

x* q* NI x* q* NI 

0.01 0.7 0.99 0.4 0.897000 38 0.10 0.15 0.50 0. 0931175 99 

0.005 0.7 0.995 0.4 0.897010 78 0.10 0.15 0.50 0.0931175 199 

0.001 0.699 0.999 0.4 0.897024 399 0.10 0.15 0.50 0.0931175 999 

0.0005 0.6995 1 0.4 0.897027 800 0.10 0.15 0.50 0.0931175 2000 

0.0001 0.6994 1 0.4 0.897028 4006 0.10 0.15 0.50 0.0931175 10000 

 

 
Fig 4: Exponential dependency between NI and step 

Before discussing the results of E-democracy, we need to underline the fact that input solutions provided in Table 4 are 
only part of an infinity of solutions. Values of output determined with AOE are fixed, but values of x* may vary. Thus if we 
fix two of the three inputs of E-democracy model, we can find the lower bound (LBFI) and upper bound (UBFI) of each of 
the final input, thus being able to determine the input intervals which yield the same optimized output q*. 

Table 5. LBFI and UBFI for a different precision step. C: Citizenry; J: Justice; D: Delegates 

Input step = 0.01 step = 0.001 step = 0.0001 

LBFI x* UBFI LBFI x* UBFI LBFI x* UBFI 

C 0.6844  0.7  0.7 0.6931  0.699  0.7014 0.6973 0.6994 0.6997 

J 0.8923  0.99  1 0.9365  0.999  1 0.97211 1 1 

D 0.3906  0.4  0.525 0.3969  0.4  0.525 0.3989 0.4 0.5 

q* 0.897000 0.897024 0.897028 

 

We briefly present the algorithm that finds boundaries for each input (AIB) when all the other inputs are fixed. AIB is a 
bisection method extension, and a Matlab implementation of AIB is provided in Appendix B3: 
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i. finding an initial lower bound (l) and initial upper bound (u) for xi
*, i = 1,n 

ii. applying bisection method for both intervals: (l, xi
*) and (xi

*, u) 
iii. stop when f(l) and f(u)  < f(xi

*) for maximization and  f(l) and f(u)  > f(xi
*) for minimization 

When minimizing the E-democracy output, LBFI equals zero and UBFI equals one for all of the three inputs, no matter the 
value of step. This happens because of RED 1. When maximizing the output, we find non-trivial bounds for the inputs, as 
shown in Table 5. 

As far as the results from Table 4 and Table 5 are concerned, we can now extract some conclusions. Firstly, identical 
maximum output for a precision of 10-4 (i.e. q* = 0.8970) is yielded by large combinations of inputs, but all are in well-
defined ranges, quite similar for different values of step. Secondly, it is obvious that for a higher step (i.e. lower precision) 
the range of all inputs is larger than for a smaller step, especially on the account of LBFI. 

On the other hand, from a political point of view, E-democracy optimum output and inputs have significant similarities, no 
matter the value of step. Justice always tends to its maximum possible value (value of 1 on a 0-1 scale). For a decent 
precision from a human perspective, step = 0.01 (i.e. 1% on a 0-1 scale), lower values of Justice, down to 0.8923, yield an 
optimum output q* = 0.8970 when Citizenry and Delegates are fixed, i.e. x* = (0.7, 0.8923, 0.4). Thus, the contribution of 
Justice to an optimum E-democracy is always in the range of its crisp values of strong Justice. Reminding that RED 6 
clearly states strong Citizenry, strong Justice and moderate Delegates for a strong E-democracy, we also observe that 
Delegates has optimum values in a range that is similar to its first half of moderate support (see Table 1 and Figure 2). On 
the contrary, Citizenry must be on a range that assure its strong level, but avoids the over level (see Table 1 and Figure 
2). This means that it always takes fuzzy values of strong Citizenry in order to obtain a maximum E-democracy. 

In conclusion, Justice must always be at a strong level, Delegates and Citizenry must reduce their moderate and strong 
levels, respectively, so that E-democracy could reach its maximum point. On the other hand, minimum E-democracy is 
easier to be achieved, if either Citizenry or Justice is at its lowest level. Nevertheless, none of the minimum and maximum 
outputs reaches the bounds of E-democracy’s 0-1 scale in our model. We also observe that the value of 0.8970 for q* 
empirically proves that E-democracy, as democracy in general, is not a perfect system, but perfectible. What variables of 
E-democracy model influence the optimum output will be part of a future research. 

3.3. Improvement of AOE (IAOE) 
While AOE uses a constant value of step s, IAOE tries to speed up the search by adaptively changing s. The logic behind 
IAOE is based on finding a value of an input where no improvements of the objective function f can be obtained. Instead of 
searching with small but solid steps for a solution, we try to find a better solution by decreasing and then incrementally 
modifying the step s. Figure 5 illustrates the basic of IAOE, and we may recognize the pattern of bisection method when 
searching for an improved f. 

 
Fig 5: Basic IAOE. i ∈ {1,2,...,n} 

The pseudo code of IAOE is provided in Appendix C1 and the Matlab implementation is also provided in Appendix C2. A 
more simple formalization of IAOE is described in the following steps: 

i. taking step S, and reading the initial values of x and q 
ii. initializing the final input x* = x 
iii. calculating the bound, i.e. new input x', by sequentially increasing the value of step S 
iv. applying bisection method for the interval given by initial value (i.e. xi) and bound (i.e. xi + uS or xi - uS) 
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Table 6 presents optimum inputs and outputs obtained with AOE and IAOE using the same variables as in Table 4, which 
only shows results yielded by AOE alone. The number of iterations NI presented in Table 6 is a total number given by 
AOE and IAOE. Furthermore, IAOE has two parts that require multiple iterations: finding x' (i.e. IAOE 3) and finding x (i.e. 
IAOE 4). If we compare results from Table 5 with results from Table 6, we observe two important things. Firstly, 
minimization is achieved with the same optimum output in infinitesimal steps when using IAOE. Secondly, for 
maximization, we have fewer steps with IAOE but the optimum output is not as precise. The difference appears when 
maximizing, because of the precision step, which is the same in both AOE and IAOE. 

Table 6. Optimum results of E-democracy output with AOE and IAOE. 
Maximization: x=(0.75, 0.95, 0.50), q=0.8566; Minimization: x=(0.10, 0.15, 0.50), q=0.0931175 

step 
Maximization Minimization 

x* q* NI x* q* NI 

0.01 0.6825 0.950 0.5 0.896567 15 0.10 0.15 0.50 0. 0931175 7 

0.005 0.6912 0.950 0.5 0.896567 29 0.10 0.15 0.50 0.0931175 8 

0.001 0.6975 0.937 0.5 0.896935 83 0.10 0.15 0.50 0.0931175 10 

0.0005 0.6975 0.947 0.5 0.896909 72 0.10 0.15 0.50 0.0931175 11 

0.0001 0.6996 0.972 0.5 0.897016 130 0.10 0.15 0.50 0.0931175 14 

 

Table 7 presents a comparison between AOE and IAOE, using the same value for step, and a comparison between AOE 
and IAOE, using a smaller precision for IAOE. 

Table 7. Comparison of maximization with different precisions for AOE and IAOE 

stepAOE 
Maximization: stepIAOE = stepAOE Maximization: stepIAOE = stepAOE × 0.01 

x* q* NI x* q* NI 

0.01 0.6825 0.950 0.5 0.896567 15 0.7002 0.9711 0.5 0.896995 87 

0.005 0.6912 0.950 0.5 0.896567 29 0.7002 0.9805 0.5 0.897002 120 

0.001 0.6975 0.937 0.5 0.896935 83 0.6991 0.9927 0.5 0.897017 135 

0.0005 0.6975 0.947 0.5 0.896909 72 0.6995 0.9961 0.4003 0.897029 285 

0.0001 0.6996 0.972 0.5 0.897016 130 0.6994 0.9992 0.4 0.897028 414 

 

Results from Table 7 prove that we may trade NI for a better precision if we use a value of step for IAOE which is a 
hundredth of the value of AOE’s step. These results are also comparable with results from Table 4, where AOE yields 
optimum inputs and output without IAOE, but with far more NI. 

In order to prove IAOE consistency, we need to compare LBFI and UBFI of AOE with IAOE and AOE alone, for different 
precision step. Table 8 shows the range of each input when the other two are fixed and the output is maximum, using AIB. 

Table 8. Maximization using AOE with IAOE: comparison of results using different precision step. 
A: stepIAOE = stepAOE; B: stepIAOE = stepAOE × 0.01; C: Citizenry; J: Justice; D: Delegates 

A step = 0.01 step = 0.001 step = 0.0001 

Input LBFI x* UBFI LBFI x* UBFI LBFI x* UBFI 

C 0.6825  0.6825  0.7225 0.6975  0. 6975  0. 6975 0.6991 0.6997 0.6997 

J 0.93  0.99  1 0.9365  0.9365  1 0.9719 1 1 

D 0.3975  0.4  0.55 0.3997  0.5  0.5 0.3997 0.5 0.5 

q* 0.896567 0.896938 0.897016 
    

B step = 0.01 step = 0.001 step = 0.0001 

Input LBFI x* UBFI LBFI x* UBFI LBFI x* UBFI 

C 0.6827  0.7  0.720 0.6931  0.699  0.7003 0.6973 0.6994 0.6997 

J 0.8911  0.97  1 0.9364  0.993  1 0.9721 0.9992 1 

 



D 0.39  0.5  0.58 0.3969  0.5  0.54 0.3989 0.4 0.5 

q* 0.896995 0.8970166 0.897028 

  

By comparing Table 8 and Table 5, we observe that LBFIs and UBFIs tend to be similar when optimum inputs and output 
are similar. AOE is a heuristic algorithm that yields decent results which depend on the precision step. AIB and IAOE also 
depend on AOE, because it offers the solution (i.e. optimum and intermediary inputs and output) based on which they 
search for bounds or improvements. When using IAOE to accelerate the search for optimum results, we are closer to the 
results yielded by AOE alone only if we use stepIAOE = stepAOE × 0.01. There are also some inconsistencies of AOE with 
IAOE and two of them can be spotted in Table 7. Firstly, when stepIAOE = stepAOE, for a lower precision step = 0.001 we 
obtain a better result (but with more NI) than with step = 0.0005. Secondly, when stepIAOE = stepAOE × 0.01, we reach a 
better output with step = 0.0005 than with step = 0.0001 and with less NI. These inconsistencies are normal in a heuristic 
approach which always depends on initial solutions, on precision and, to a greater degree, on the type of problem it deals 
with. 

From a human perspective point of view and with decent precision, we believe that AOE and all the other components 
may lead to consistent results in an MFIS, especially when dealing with problems related to common knowledge. In the 
next section, we will try to verify AOE in a context that is not quite appropriate for it. We do this in order to examine the 
behavior of AOE and its components in harder environmental conditions, where differentiability of least-square function is 
appropriate. 

We conclude this section by wrapping up its contents: we have described a direct search algorithm which offers a reliable 
solution to an MFIS (i.e. AOE) and we have also discussed some other algorithms that support (i.e. AGAC, AIS), improve 
(i.e. IAOE) and broaden (i.e. AIB) the AOE introduced herein. We have applied AOE and its family of methods to the MFIS 
of NME, and we have obtained some interesting results which are going to be summarized in Conclusions. 

4. COMPARING AOE WITH DIFFERENTIABLE MINIMIZATION METHODS 
In this section, we will compare AOE to a method of nonlinear differentiable minimization for a series of data. The classical 
approach of nonlinear optimization takes into account the minimization of Euclidian distance of a given series of data 
against  a theoretical analytical function,  see formula (2). 
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We will use the Matlab function lsqnonlin which implements two algorithms: Levenberg-Marquardt (LM) [17] and Newton 
interior reflective trusted-region (TR) [18]. We refer to previous research in the field of option pricing estimation through 
one parameter and three parameters [19]. We will try to verify if AOE is consistent with non-linear minimization which 
yields an implied volatility or implied volatility, skewness and kurtosis. In case of implied volatility, the function that models 
one vector of observed variables from a series of data is given by Black-Scholes formula [20]. In case of the three implied 
parameters: volatility, skewness and kurtosis, the function that models a vector of observed variables in a series of data is 
given by Negrea-Maillet-Jurczenko formula [21]. Appendix D describes in detail the methods, data and results used in this 
short comparison between AOE, LM and TR for a minimization process. Table 9 presents transactions of two series of call 
options data (i.e. O1 and O2). 

Table 9. Transactions for two options: O1 and O2. 
C: observed call option price; K: strike price; S: underlying price; r: interest rate; T-t: duration 

O1  O2 

C K S r T-t  C K S r T-t 

510 2500 2979.46 3.4 75  195 2500 2608.54 3.32 217 

440 2500 2904.27 3.41 74  195 2500 2610.05 3.32 217 

437 2500 2898.15 3.41 74  170 2500 2562.56 3.38 194 

433 2500 2892.12 3.41 74  172 2500 2567.17 3.38 194 

430 2500 2889.95 3.41 74  174 2500 2574.46 3.38 194 

380 2500 2837.48 3.41 71  174 2500 2573 3.38 194 

380 2500 2838.53 3.41 71       

524 2500 2987.6 3.38 69       

 



525 2500 3004.29 3.38 69       

531 2500 3006.65 3.38 69       

 

Using formula (2), we will minimize the data of O1 and O2 for one and three parameters, see also Appendix D. Table 10 
presents the results obtained for one parameter (i.e. volatility) minimization: 

Table 10. Minimization for one parameter 

Method 
O1: initial solution x = 0.5 

x* d step NI absolute/relative error 

AOE 

+ 

IAOE 

0.2928348 130.17481188 0.00001 20001 -8.31E-06 -0.000006% 

0.292856 130.17494886 0.0001 10552 -1.45E-04 -0.000112% 

0.29258 130.20802619 0.001 1054 -3.32E-02 -0.025515% 

LM 0.292838912 130.17480358 - - 0.00E+00 0.000000% 

TR 0.292838892 130.17480358 - - 0.00E+00 0.000000% 

AOE 

0.29284 130.17480419 0.00001 20001 -6.10E-07 0.000000% 

0.2928 130.17555411 0.0001 12072 -7.51E-04 -0.000577% 

0.293 130.18769589 0.001 1206 -1.29E-02 -0.009903% 
       

Method 
O2: initial solution x = 0.5 

x* d step NI absolute/relative error 

AOE 

+ 

IAOE 

0.1380796 279.40903389 0.00001 20001 -7.50E-07 0.000000% 

0.1380505 279.41132961 0.0001 11459 -2.30E-03 -0.000822% 

0.1376179 279.96551909 0.001 1035 -5.56E-01 -0.198769% 

LM 0.1380801 279.40903314 - - 0.00E+00 0.000000% 

TR 0.1380801 279.40903314 - - 0.00E+00 0.000000% 

AOE 

0.13808 279.40903319 0.00001 20001 -5.00E-08 0.000000% 

0.1381 279.41006166 0.0001 13619 -1.03E-03 -0.000368% 

0.138 279.42576994 0.001 1361 -1.67E-02 -0.005990% 

 

Both O1 and O2 offer decent results for the final solution x* and for the Euclidian distance d. We observe that, with a single 
exception, AOE alone yields better results than AOE with IAOE (using stepIAOE = stepAOE × 0.01). In case of minimization 
through Euclidian distance the difference between NI is not as large as in case of minimization of MFIS, see Table 6. 
When using stepIAOE = stepAOE × 0.1 and stepIAOE = stepAOE we also obtain surprisingly good results, see Appendix D. 

So far, for one parameter minimization, AOE yields decent results, although with a large amount of time, as given by NI, 
see Table 10. The next step is to see if AOE may lead to decent results for a three parameters minimization. In case of 
one parameter minimization the results are in the range of precision step. AOE cannot use a differentiability of any 
function, either the Euclidian distance or any other function that models the data (when using an algorithm like 
backpropagation). AOE is designed for MFIS, but it may be applied to some other types of fuzzy inference system (e.g. 
Sugeno-Takagi type), and it works well for minimization and maximization. This is the reason why results for multiple 
minimization are far better achieved with algorithms designed to work with Euclidian distance. Even with such methods 
(i.e. LM and TR), we have no guarantee for optimum results. 

Table 11 presents a comparison between AOE, LM and TR for multiple (volatility, skewness and kurtosis) non-linear 
minimizations of O1 and O2. Results from Table 11 give an indication of what AOE can do for multiple parameters 
minimization. Sometimes, even for LM (in case of O1) or TR (in case of O2) is difficult to yield a decent solution. Although 
values of final vector solution x* are not the same for AOE with IAOE comparing to TR or LM, they sometimes yield a good 
and very good minimized Euclidian distance d. 

The goal of comparing AOE with TR and LM is to prove that, through a heuristic approach, it is consistent with its results. 
For minimization AOE depends on the initial solution, but so does LM and so does TR when it comes to bounds of the final 
solution. AOE is not designed for minimization using Euclidian distance, but it has the ability of finding decent solutions, 
especially for one parameter minimization. Without an alternative for minimization or maximization of an output of MFIS, 

 



we have only verified AOE in the context of a problem for which AOE is not designed. However, this also proves some sort 
of consistency and accuracy of AOE. 

In this section we have compared AOE and AOE with IAOE to non-linear optimization least-square methods and we have 
observed that for one parameter minimization the results of AOE (with or without IAOE) are very good, while for three 
parameters minimization they occasionally yield decent solutions. 

 

Table 11. Three parameters non-linear minimization 

Method 
O1: initial solution x = (0.5; -1; 1) 

x* d step NI absolute/relative error 

AOE 

+ 

IAOE 

0.17 -8.29 6.63 122.9855 10-5 20001 -2.01E+00 -1.6332% 

0.18 -7.64 1.37 123.5460 10-4 11768 -2.57E+00 -2.0795% 

0.18 -7.85 2.77 123.3385 10-3 1227 -2.36E+00 -1.9147% 

LM NaN NaN NaN NaN - - NaN NaN 

TR 0.98 -1.34 -9.71 120.9769 - - 0.00E+00 0.0000% 

AOE 

0.14 -2.52 1.00 3611.7008 10-5 20001 -3.49E+03 -96.6504% 

0.14 -2.52 1.00 3611.7008 10-4 20001 -3.49E+03 -96.6504% 

0.19 -7.35 -0.29 123.8450 10-3 9230 -2.87E+00 -2.3159% 
         

Method 
O2: initial solution x = (0.5; -20; 1) 

x* d step NI absolute/relative error 

AOE 

+ 

IAOE 

0.04 -27.60 -2.32 0.4821 10-5 20001 -1.90E-01 -39.5072% 

0.04 -25.97 -5.77 0.3539 10-4 11040 -6.22E-02 -17.5796% 

0.04 -15.18 -23.63 0.5588 10-3 1680 -2.67E-01 -47.8062% 

LM 0.04 -22.54 -11.93 0.2917 - - 0.00E+00 0.0000% 

TR 0.19 15.38 -13.99 7.9592 - - -7.67E+00 -96.3352% 

AOE 

0.50 -20.00 0.81 12837.0470 10-5 20001 -1.28E+04 -99.9977% 

0.45 -20.00 -0.95 10270.9820 10-4 20001 -1.03E+04 -99.9972% 

0.05 -21.37 -3.72 77.4435 10-3 20001 -7.72E+01 -99.6234% 

 

CONCLUSIONS 
This paper has presented a direct search algorithm (i.e. AOE) which finds the optimum output in a fuzzy inference system 
(e.g. MFIS). We have introduced a model of E-Democracy (i.e. NME) that is based on an MFIS and we have applied AOE 
to find its optimum outputs. We have also provided other algorithms for: generating the positive antecedents and 
constraints of an MFIS (i.e. AGAC), finding an initial solution for AOE (i.e. AIS), searching for boundaries of solutions (i.e. 
AIB), and accelerating the search for solutions (IAOE). We have compared AOE to differential least-square methods of 
optimization and we have observed that AOE may yield decent solutions on some occasions, especially for one parameter 
optimization. 

AOE depends on some variables: initial solution, precision and number of iterations. Results are not strongly affected by 
these variables in case of fuzzy optimization, while for least-square minimization the variables may be decisive. 
Nevertheless, our field of interest is non-differentiable optimization, and AOE and its supportive components find a global 
optimum solution. This optimum solution may occur in an unpredictable range, and we have proved that in an MFIS there 
may be an infinity of solutions on a certain interval (using AIB). When speeding up the search (using IAOE) the number of 
iterations substantially decrease, but on some occasions we may obtain a poorer result than searching with smaller steps. 
The precision is important for both accelerated and simple search, but the improvements of the objective function lie in the 
range of that precision, which makes AOE (with or without IAOE) reliable. 

Further researches on direct search methods for fuzzy optimization may try to better adapt the step that modifies the 
values of intermediary solution vector. We identify two approaches for improvements: statistics and predictions on 
objective function curvature, and random sampling of intermediary vector solutions. 
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A1. http://turcoane.com/ijct/AOE-pseudocode.pdf 
A2. http://turcoane.com/ijct/AOE_IAOE.txt 

B1. http://turcoane.com/ijct/AGAC-pseudocode.pdf 
B2. http://turcoane.com/ijct/AIS-pseudocode.pdf 
B3. http://turcoane.com/ijct/AIB.txt 

C1. http://turcoane.com/ijct/IAOE-pseudocode.pdf 
C2. http://turcoane.com/ijct/IAOE.txt 

D. http://turcoane.com/ijct/Comparing-AOE-with-other-minimization-methods.pdf 
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